

Your Reference:

OilJar Ltd

16 Maple Walk, Brandesburton, East Yorkshire, YO25 8SH, United Kingdom **Mr. Joe Stevenson, Director** https://oiljar.com/

For the attention of

GE-0188-04-2017
20-Apr-17
Travestern
Batumi
Gasoline Au-95, Gasoline Au-98
20-Apr-17

LOADED :

We have pleasure in enclosing herewith, our report for the above referenced inspection.

This report is intended for the sole use of the recipient and its purpose is to offer a summary of events and measurements associated with the caption ed Custody Transfer to / from the stated ship and during the stated period. The summary report may contain the attending surveyor's opinion which should always and only be taken as a professional opinion and not a statement of fact.

The findings of the surveyor, reported herein, are subject to the level of access and cooperation afforded to the surveyor at the time of inspection. All the details are given in good faith and are, to the best of our knowledge, accurate and reliable. However, we do not imply any guarantees for data that has been provided to us, in any form. All our inspection services are subject to our General Terms and Conditions which can be found on our website.

Procedures

Where possible, and was safe to do so, we have complied with your instructions so long as these also comply with API MPMS Chapter 17 Guidelines for Marine Inspection.

At all times our surveyors have respected any regulations and procedures that may have been in place at the Terminal and / or the ship.

Where the inspection has required our surveyor to witness analysis of the product (in a Third-Party Laboratory) we have insured the test method used was as per relevant ASTM or IP method. We cannot be held responsible for the competence of the operator, the condition of the equipment(other than checking calibration records), or any reagents used. Report distribution has been effected as follows:

To yourselves in original only together with our relevant invoice. CC: . Attn

Should you have any query, or require any additional information, please contact Joe Stevenson by the following e-mail address: joe.stevenson@OilJar.com

GE-0188-04-2017 20-Apr-17 Travestern Batumi

20-Apr-17

Gasoline Au-95, Gasoline Au-98

B/Lading date

Product

CONTENTS LISTING

Document Title	
Cover Letter No. 1	One
Contents Listing	One
Summary of Quantities by ASTM	One
Summary of Quantities by GOST	One
Certificate Of Shore Quantity by ASTM (Gasoline Au-95)	One
Certificate Of Shore Quantity by ASTM (Gasoline Au-98)	One
Certificate Of Shore Quantity by GOST (Gasoline Au-95)	One
Certificate Of Shore Quantity by GOST (Gasoline Au-98)	One
Certificate Of Quality (Gasoline Au-95 ex ship tanks)	One
Certificate Of Quality (Gasoline Au-98 ex ship tanks)	One
Time Log	One
Ullage Report after loading	One
Ullage Report after loading	One
Vessel Tanks Inspection Report	One
On Board Quantity (OBQ) Report	One
Report Of Shore Based Quantity by ASTM, page 1 (Gasoline Au-95)	One
Report Of Shore Based Quantity by ASTM, page 1 (Gasoline Au-98)	One
Report Of Shore Based Quantity by GOST, page 1 (Gasoline Au-95)	One
Report Of Shore Based Quantity by GOST, page 1 (Gasoline Au-98)	One
Vessel Experience Report	One
Bunker Report (MDO)	One
Bunker Report (HFO)	One
Receipt For Documents/Samples	One
Certificate of Quantity (Gasoline Au-95) B/L No. 1	One
Certificate of Quantity (Gasoline Au-98) B/L No. 2	One
Statement Of Facts (Sealing of Manifold)	One
Statement Of Facts	One
Letter Of Protest on Discrepancy (Gasoline Au-95)	One
Letter Of Protest on Discrepancy (Gasoline Au-98)	One
Letter Of Protest	One
Sample List	One
Vitol Loss Control Form (Gasoline Au-95)	One
Vitol Loss Control Form (Gasoline Au-98)	One

Total Pages:

Report no.	GE-0188-04-2017	SUMMARY OF QUANTITIES
Date of report	20-Apr-17	Comparison of Shin's figures and Bill of Lading
Vessel	Travestern	companion of ompositions and bin of Edding
Location	Batumi	Calculation by ASTM D 1250-2004

Product

Gasoline Au-95, Gasoline Au-98

B/Lading date 20-Apr-17

Totals of the Bills Of Lad	ing					
Product	Gasoline Au-	Gasoline Au-				Total
FIOUUCL	95	98				TOLAT
Measured Cubic Metres						
Cubic Metres @ 15°C	7,480.786	6,658.592				14,139.378
Metric Tons (in Air)	5,499.199	4,907.448				10,406.647
Metric Tons (in Vacuo)	5,507.355	4,914.707				10,422.062
		CUBIC METR	ES AT 15°C (G	ROSS STAND	ARD VOLUME)	
Bill of Lading	7,480.786	6,658.592			,	14,139.378
Vessel's loaded quantity	7,475.193	6,665.282				14,140.475
Difference	-5.593	6.690				1.097
% Difference	-0.100%	0.100%				
Bill of Lading	7,480.786	6,658.592				14,139.378
Vessel adjusted by VEF	7,500.695	6,688.021				14,188.716
Difference	19.909	29.429				49.338
% Difference	0.300%	0.400%				0.300%
			- S ΔT 60°C (GR	OSS STANDAI		•
Bill of Lading	47 085 22	41 909 78				88 995 00
Vessel's loaded quantity	47 050 01	41 951 89				89 001 90
Difference	-35.210	42.11				6.90
% Difference	-0.100%	0.100%				0100
Bill of Lading	47.085.22	41,909,78				88,995.00
Vessel adjusted by VEF	47,210.53	42,095.01				89,305.54
Difference	125.31	185.23				310.54
% Difference	0.300%	0.400%				0.300%
		MFTD	TC TONS IN AT	D (CDOSS WE	ТСНТ)	
Bill of Lading	5 499 199	4 907 448				10 406 647
Vessel's loaded quantity	5 495 089	4 912 379				10 407 468
Difference	-4.110	4.931				0.821
% Difference	-0.075%	0.100%				0.008%
Bill of Lading	5,499,199	4,907,448				10,406.647
Vessel adjusted by VEF	5,513.836	4,929.138				10,442.974
Difference	14.637	21.690				36.327
% Difference	0.266%	0.442%				0.349%
		METDIC				
Bill of Lading	5 507 355					10 422 062
Vessel's loaded quantity	5 503 237	4 919 645				10 422 882
Difference	-4 118	4 938				0.820
% Difference	-0.075%	0.100%				0.008%
Bill of Lading	5.507.355	4,914,707				10.422.062
Vessel adjusted by VEF	5,522.012	4,936.429				10,458.441
Difference	14.657	21.722				36.379
% Difference	0.300%	0.400%				0.300%

Quantities on board the Vessel are as calculated by "OilJar Ltd".

SUMMARY OF QUANTITIES

Date of report Vessel Location B/Lading date

Report no.

20-Apr-17 Travestern Batumi 20-Apr-17

GE-0188-04-2017

Comparison of Ship's figures and Bill of Lading GOST calculation by GOST 3900-47

Gross Quantities

Totals of the Bills Of Lading	Gasoline Au-95	Gasoline Au-98				Total
			 IETRES AT 20°0	C (GROSS STAN)
Bill of Lading	7.521.654	6.694.874				14.216.528
Vessel's loaded quantity	7,519,971	-,				7,519,971
Difference	-1.683					-6.696.557
% Difference	-0.022%					-47.104%
Bill of Lading	7.521.654	6.694.874				14.216.528
Vessel adjusted by VEF	7.545.626	6,730,640				14,276,266
Difference	23.972	35.766				59.738
% Difference	0.319%	0.534%				0.420%
	0101070		LETRES AT 15°C	C (GROSS STAN	DARD VOLUME)
Bill of Lading	7,480.786	6,658.592				14,139.378
Vessel's loaded quantity	7,473.021	6,665.986				14,139.007
Difference	-7.765	7.394				-0.371
% Difference	-0.104%	0.111%				-0.003%
Bill of Lading	7,480.786	6,658.592				14,139.378
Vessel adjusted by VEF	7,498.516	6,688.728				14,187.244
Difference	17.730	30.136				47.866
% Difference	0.237%	0.453%				0.339%
		US BAF	RRELS AT 60°C	(GROSS STAND	ARD VOLUME)	
Bill of Lading	47,085.22	41,909.78				88,995.00
Vessel's loaded quantity	47,036.35	41,956.31				88,992.66
Difference	-48.87	46.53				-2.34
% Difference	-0.104%	0.111%				-0.003%
Bill of Lading	47,085.22	41,909.78				88,995.00
Vessel adjusted by VEF	47,196.82	42,099.45				89,296.27
Difference	111.60	189.67				301.27
% Difference	0.237%	0.453%				0.339%
		M	IETRIC TONS I	N AIR (GROSS V	VEIGHT)	
Bill of Lading	5,499.199	4,907.448				10,406.647
Vessel's loaded quantity	5,497.973	4,916.875				10,414.848
Difference	-1.226	9.427				8.201
% Difference	-0.022%	0.192%				0.079%
Bill of Lading	5,499.199	4,907.448				10,406.647
Vessel adjusted by VEF	5,516.730	4,933.649				10,450.379
Difference	17.531	26.201				43.732
% Difference	0.319%	0.534%				0.420%
	E 507 055	ME	TRIC TONS IN	VACUO (GROSS	WEIGHT)	10.100.000
Bill of Lading	5,50/.355	4,914./0/				10,422.062
vessel's loaded quantity	5,506.122	4,924.163				10,430.285
Difference	-1.233	9.456				8.223
% Difference	-0.022%	0.192%				0.079%
Bill of Lading	5,507.355	4,914.707				10,422.062
Vessel adjusted by VEF	5,524.907	4,940.962				10,465.869
Difference	17.552	26.255				43.807
% Difference	0.319%	0.534%				0.420%

Quantities on board the Vessel are as calculated by "OilJar Ltd". GOST calculation by GOST 3900-47. Conversion factor from Metric tons in vacuo to US Bbls at 60° F by GOST 8.595-2010

GE-0188-04-2017 20-Apr-17 Travestern Batumi

CERTIFICATE OF SHORE QUANTITY Calculation by ASTM D 1250-2004

Gasoline Au-95

Dill of Lading data	20 Apr 17
	20-Api-17
Gross Metric Tons in vacuo	5,522.012
Gross Metric Tons in air	5,513.836
Gross Long Tons	5,426.75
Gross US barrels at 60°F	47,210.53
Gross US gallons at 60°F	1,982,842.26
Gross Cubic Metres at at 15°C	7,500.695
Pro rata delivered Density at 15°C in vacuo	0.7362
API gravity from Density at 15°C as per Chapter 11.5.	60.65

Above quantities determined by "OilJar Ltd" on basis of shore measurements. Metric Tons in Vacuo = Gross Standard Volume at 15° C * Density at 15° C in Vacuo Metric Tons in Air = Gross Standard Volume at 15° C * Density at 15° C in Air

Criteria used for calculations:

US Barrels at 60°F / CuM at 15°C by Chapter 11.5 Conv. factor from US Bbls to US Gallons by Table 1 Average Density at 15°C (in air) W.C.F. = Metric Tons in Air / Metric Tons in Vacuo = Long Tons = Metric Tons in Air * by

6.294153738
42
0.73511
0.99852
0.984206

GE-0188-04-2017 20-Apr-17 Travestern Batumi

CERTIFICATE OF SHORE QUANTITY Calculation by ASTM D 1250-2004

Gasoline Au-98

Bill of Lading date	20-Apr-17
Gross Metric Tons in vacuo	4,936.429
Gross Metric Tons in air	4,929.138
Gross Long Tons	4,851.29
Gross US barrels at 60°F	42,095.01
Gross US gallons at 60°F	1,767,990.42
Gross Cubic Metres at at 15°C	6,688.021
Pro rata delivered Density at 15°C in vacuo	0.7414
API gravity from Density at 15°C as per Chapter 11.5.	59.30

Above quantities determined by "OilJar Ltd" on basis of shore measurements. Metric Tons in Vacuo = Gross Standard Volume at 15° C * Density at 15° C in Vacuo Metric Tons in Air = Gross Standard Volume at 15° C * Density at 15° C in Air

Criteria used for calculations:

US Barrels at 60°F / CuM at 15°C by Chapter 11.5 Conv. factor from US Bbls to US Gallons by Table 1 Average Density at 15°C (in air) W.C.F. = Metric Tons in Air / Metric Tons in Vacuo = Long Tons = Metric Tons in Air * by

6.294090753	
42	
0.74031	
0.99853	
0.984206	

GE-0188-04-2017 20-Apr-17 Travestern Batumi

CERTIFICATE OF SHORE QUANTITY GOST calculation by GOST 3900-47

Gasoline Au-95

Bill of Lading date	20-Apr-17
Gross Metric Tons in vacuo	5,510.015
Gross Metric Tons in air	5,498.871
Gross Long Tons	5,412.02
Gross US barrels at 60°F	47,107.96
Gross US gallons at 60°F	1,978,534.32
Gross Cubic Metres at at 15°C	7,484.400
Gross Cubic Metres at at 20°C	7,525.287
Pro rata delivered Density at 15°C in vacuo	0.7362
Pro rata delivered Density at 20°C in vacuo	0.7322
API gravity from Density at 15°C as per Chapter 11.5.	60.65

Above quantities determined by "OilJar Ltd" on basis of shore measurements. Metric Tons in Vacuo = Gross Standard Volume at 15°C * Density at 15°C in Vacuo Metric Tons in Air = Gross Standard Volume at 15°C * Density at 15°C in Air

Criteria used for calculations:

US Bbls@60°F / Mt vacuo by GOST 8.595-2010 Conv. factor from US Bbls to US Gallons by Table 1 W.C.F. = Metric Tons in Air / Metric Tons in Vacuo = Long Tons = Metric Tons in Air * by

8.549516079	
42	
0.99852	
0.984206	

GE-0188-04-2017 20-Apr-17 Travestern Batumi

CERTIFICATE OF SHORE QUANTITY GOST calculation by GOST 3900-47

Gasoline Au-98

Bill of Lading date	20-Apr-17
Gross Metric Tons in vacuo	4,017.725
Gross Metric Tons in air	4,007.835
Gross Long Tons	3,944.54
Gross US barrels at 60°F	34,108.35
Gross US gallons at 60°F	1,432,550.70
Gross Cubic Metres at at 15°C	5,419.105
Gross Cubic Metres at at 20°C	5,448.501
Pro rata delivered Density at 15°C in vacuo	0.7414
Pro rata delivered Density at 20°C in vacuo	0.7374
API gravity from Density at 15°C as per Chapter 11.5.	59.30

Above quantities determined by "OilJar Ltd" on basis of shore measurements. Metric Tons in Vacuo = Gross Standard Volume at 15°C * Density at 15°C in Vacuo Metric Tons in Air = Gross Standard Volume at 15°C * Density at 15°C in Air

Criteria used for calculations:

US Bbls@60°F / Mt vacuo by GOST 8.595-2010 Conv. factor from US Bbls to US Gallons by Table 1 W.C.F. = Metric Tons in Air / Metric Tons in Vacuo = Long Tons = Metric Tons in Air * by

8.489466891	
42	
0.99853	
0.984206	

Report no. Date of report Vessel Location Product B/Lading date SAMPLE OF: SAMPLE DRAWN: SAMPLE DESCRIPTION: RECEIVED ON: TESTING PERFORMED BY: ON THE:	GE-0188-04-20 20-Apr-17 Travestern Batumi Gasoline Au-95 20-Apr-17	Gasoline Au-9 by OilJar inspo Multiple Ship's (running) fron 20-Apr-17 Third Party La	CER 5 ector s Tank Composite Sample n each ship's tank iboratory	TIFICATE O	PF QUALITY
Т	est	20 / 0/ 1/	Method	Specification	Result
Density at 15°C in vac Density at 20°C in vac API Gravity at 60°F Appearance Colour Odour Octane Number (RON) Copper Corrosion 3 hours a Reid Vapour Pressure Distillation recovered at 70°C recovered at 100°C recovered at 150°C FBP Residue Lead content Existent gum (not washed) Existent gum (not washed) Sulphur content Oxidation stability Benzene content Water reaction Ethanol content	est at 50°C	kg/l kg/l °API kPa % volume % volume °C % volume g/l mg / 100 ml mg / 100 ml mg / kg minute % volume % volume % volume	Table 53B ASTM D1250-04 by GOST 3900-47 API MPMS Chapter 11.5. Visual ASTM D2699 ASTM D130 GOST EN 13016-1 ASTM D86 ASTM D881 ASTM D381 ASTM D4294 ASTM D525 ASTM D3606 ASTM D 1094 GOST EN 13132	Clear & Bright Red Marketable min. 95 max. 1b 35 - 100 15 - 50 40 - 70 min. 75 max. 215 max. 2 nil max. 30 max. 5 max. 8 min. 240 max. 1% nil max. 5%	Result 0.7362 0.7322 60.65 Clear & Bright Red Marketable 95.8 1a 76 38 62 90 196 1 12 1 <5

Report no.	GE-0188-04-20	17			
Date of report	20-Apr-17				
Vessel	Travestern		CER	TIFICATE O	F QUALITY
Location	Batumi				
Product	Gasoline Au-98				
B/Lading date	20-Apr-17				
SAMPLE OF:	20701	Gasoline Au-9	8		
SAMPLE DRAWN:		by OilJar insp	ector		
SAMPLE DESCRIPTION:		Multiple Ship's	s Tank Composite Sample		
		(Upper-Middle	e-Lower) from each ship's tan	k	
RECEIVED ON:		20-Apr-17			
TESTING PERFORMED BY:		Third Party La	aboratory		
ON THE:		20-Apr-17			
Т	est		Method	Specification	Result
Density at 15°C in vac		kg/l	Table 53B ASTM D1250-04		0.7381
Density at 20°C in vac		kg/l	by GOST 3900-47		0.7341
API Gravity at 60°F		°API	API MPMS Chapter 11.5.		60.15
Appearance			Visual	Clear & Bright	Clear & Bright
Colour			Visual	Green	Green
Odour				Marketable	Marketable
Octane Number (RON)			ASTM D2699	min. 98	98.3
Copper Corrosion 3 hours a	t 50°C		ASTM D130	max. 1b	1a
Reid Vapour Pressure		kPa	ASTM D323	35 - 100	64
Distillation			ASTM D86		
recovered at 5%		°C		max. 70	44
recovered at 90%		°C		max. 180	164
FBP		°C		max. 215	194
Residue		% volume		max. 2	.,
Lead content		g/l	ASTM D3348	nii may 0	nii
Sulphur content		mg / kg	ASTM D4294	max. 8	δ
Benzene content		% volume		mil	mil
		% volume	ASTM D 1094	nil	nil
		% volume		1111	1111

Report no. Date of repor Vessel Location	t	GE-0188-04-2017 20-Apr-17 Travestern Batumi	TIME LOG
Product		Gasoline Au-95, Gasoline Au-98	
B/Lading date	е	20-Apr-17	
Time	Date	Operations	
02:20	19-Apr-17	Vessel arrived at "End of Sea Passage"	
02.24	10_{-} Apr-17	Pilot on board	

02:24	19-Apr-17	Pilot on board
05:45	19-Apr-17	Shore tanks gauged before
07:36	19-Apr-17	Notice of Readiness tendered
08:20	19-Apr-17	All Fast
08:20	19-Apr-17	Gangway secured
08:20	19-Apr-17	Notice of Readiness received
08:30	19-Apr-17	Surveyor on board
08:30	19-Apr-17	Completed vessel's tank inspection
08:54	19-Apr-17	Hoses 2 x 12" connected
09:36	19-Apr-17	Commenced Loading Gasoline Au-95
10:20	19-Apr-17	Completed Loading Gasoline Au-95
16:30	19-Apr-17	Commenced Loading Gasoline Au-98
16:50	19-Apr-17	Completed Loading Gasoline Au-98
23:59	19-Apr-17	Hoses disconnected
00:25	20-Apr-17	Completed measuring vessel's tanks
00:30	20-Apr-17	Completed sampling vessel's tanks
00:30	20-Apr-17	Completed cargo calculations
00:30	20-Apr-17	Surveyor's documents on board
01:15	20-Apr-17	Shore tanks gauged after
03:00	20-Apr-17	Vessel sailed (ETS)

DEL	AYS	REASON		
From	То	KEASON		

Remarks: (*) - As per information received from the Master of the vessel Average delivery rate for each grade is as follows:

770.259 Mt in vacuo per hour for Gasoline Au-95, i.e. Mt in vacuo divided by 7 hours 9 minutes.

796.98 Mt in vacuo per hour for Gasoline Au-98, i.e. Mt in vacuo divided by 6 hours 10 minutes.

GE-0188-04-2017 Report no. Date of report 20-Apr-17 Vessel Travestern Location Batumi Product Gasoline Au-95, Gasoline Au-98 20-Apr-17 B/Lading date

ULLAGE REPORT AFTER LOADING Calculation by ASTM D 1250-2004

Draft:	FWD:	11.00	<u>т,</u> А	FT: 1	1.20	m, Trim:	0.20	m, List:	Nil		
Tank	U	Illage	Total Obs		Fre	e Water	Gross Obs.	Temp	V.C.F.		Gross Standard
No		Mtrs	Volume	. –	Din	Volume	Volume	remp	hv	*	Volume
	Δctual	Corrected	Cu Mtrs	l r	Mtrs	Cu Mtrs	Cu Mtrs	ംറ	T 54B		Cu Mtrs
1P	necuui	1 100	612.3	54	110.5	Curnes	612 354	16.5	0 99815	1	611 221
15		1.100	616.6	69			616 669	16.5	0.00015	1	615 528
20		1.050	1 043 1	70			1 043 170	17.0	0.99013	1	1 040 503
25		1.090	1,043.1	10			1,043.170	17.0	0.99733		1 0/1 920
23		1.000	1,044.4	01			1,044.410	16 5	0.99755		1,041.030
70		1.440	1,139.8	91			1,139.891	10.5	0.99815	1	1,137.782
/5		1.720	1,105.8	/1			1,105.8/1	16.0	0.99876	1	1,104.500
8P		1.330	980.4	29			980.429	17.0	0.99753	1	9/8.00/
85		1.620	948.0	/4			948.074	1/.0	0.99/53	1	945./32
10		7.900	454.3	01			454.301	18.5	0.99569	2	452.343
4P		1.110	1,219.4	52			1,219.452	23.0	0.99013	2	1,207.416
4S		1.140	1,215.7	92			1,215.792	23.0	0.99013	2	1,203.792
5P		1.130	1,279.0	23			1,279.023	23.0	0.99013	2	1,266.399
5S		1.120	1,280.3	03			1,280.303	23.0	0.99013	2	1,267.666
3C		1.120	1,280.3	03			1,280.303	23.0	0.99013	2	1,267.666
Totals			14,220.0	42			14,220.042				14,140.475
Totals		Pro	14,220.0	42		Factor by	14,220.042		ee Water		14,140.475 GOV
Totals Product Code (*)		Prc Nar	14,220.0	42		Factor by	14,220.042 TOV Cu Mtrs	Fr	ee Water		14,140.475 GOV Cu Mtrs
Totals Product Code (*)	Gasoline	Prc Nar	14,220.0 oduct ne(s)	42		Factor by Chapt. 11.5 6 29415	14,220.042 TOV Cu Mtrs 7 490 868	Fr.	ee Water Cu Mtrs		14,140.475 GOV Cu Mtrs 7,490,868
Totals Product Code (*) 1 2	Gasoline	Prc Nar 2 Au-95	14,220.0 oduct ne(s)	42		Factor by Chapt. 11.5 6.29415 6.29409	14,220.042 TOV Cu Mtrs 7,490.868 6 729 174	Fr (ee Water Cu Mtrs		14,140.475 GOV Cu Mtrs 7,490.868 6 729 174
Totals Product Code (*) 1 2	Gasoline	Pro Nar 2 Au-95 2 Au-98	14,220.0 oduct ne(s)	42		Factor by Chapt. 11.5 6.29415 6.29409	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174	Fr.	ee Water Cu Mtrs		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174
Totals Product Code (*) 1 2	Gasoline Gasoline	Pro Nar 2 Au-95 2 Au-98	14,220.0 oduct ne(s)	42		Factor by Chapt. 11.5 6.29415 6.29409	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174	Fr. (ee Water Cu Mtrs		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174
Totals Product Code (*) 1 2	Gasoline Gasoline	Pro Nar e Au-95 e Au-98	14,220.0 nduct ne(s)	42		Factor by Chapt. 11.5 6.29415 6.29409	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174	Fr. (ee Water Cu Mtrs		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174
Totals Product Code (*) 1 2	Gasoline Gasoline	Pro Nar 2 Au-95 2 Au-98	14,220.0 nduct ne(s)	42		Factor by Chapt. 11.5 6.29415 6.29409	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174	Fr	ee Water Cu Mtrs		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174
Totals Product Code (*) 1 2 Long Tons	Gasoline Gasoline = Metric to	Pro Nar Au-95 Au-98 ns (air) x	14,220.0 iduct ne(s) 0.984200	42 5		Factor by Chapt. 11.5 6.29415 6.29409 Totals:	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042	Fr	ee Water Cu Mtrs		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042
Totals Product Code (*) 1 2 Long Tons Product	Gasoline Gasoline = Metric to Density	Pro Nar Au-95 Au-98 ns (air) x W.C.F. by	14,220.0 nduct ne(s) 0.984200 G.S.V. @15	42 42 5 5 °C	OB	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV)	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C	Fr. (ee Water Cu Mtrs .V. @60°F		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons
Totals Product Code (*) 1 2 Long Tons Product Code (*)	Gasoline Gasoline = Metric to Density @ 15°C	Prc Nar Au-95 Au-98 ns (air) x W.C.F. by Chapt. 11.5.	14,220.0 nduct ne(s) 0.984200 G.S.V. @15 Cu Mtrs	42 42 55 56 °C	OB	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) iu Mtrs	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs	Fr. (ee Water Cu Mtrs .V. @60°F ed, US bbls		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air)
Totals Product Code (*) 1 2 Long Tons Product Code (*) 1 1 2	Gasoline Gasoline = Metric to Density @ 15°C 0.7362	Prc Nar Au-95 Au-98 ns (air) x W.C.F. by Chapt. 11.5. 0.73511	14,220.0 duct ne(s) 0.984200 G.S.V. @15 Cu Mtrs 7,475.1	42 42 5 5 7 93	OB	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) tu Mtrs	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs 7,475.193	G.S Load	ee Water Cu Mtrs .V. @60°F ed, US bbls 47,050.000		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air) 5,495.089
Totals Product Code (*) 1 2 Long Tons Product Code (*) 1 2	Gasoline Gasoline = Metric to Density @ 15°C 0.7362 0.7381	Pro Nar 2 Au-95 2 Au-98 ns (air) x W.C.F. by Chapt. 11.5. 0.73511 0.73701	14,220.0 duct ne(s) 0.984200 G.S.V. @15 Cu Mtrs 7,475.1 6,665.2	42 42 5 5 °C 93 82	OB	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) tu Mtrs	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs 7,475.193 6,665.282	G.S Load	ee Water Cu Mtrs .V. @60°F ed, US bbls 47,050.000 41,952.000		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air) 5,495.089 4,912.379
Totals Product Code (*) 1 2 Long Tons Product Code (*) 1 2	Gasoline Gasoline = Metric to Density @ 15°C 0.7362 0.7381	Pro Nar 2 Au-95 2 Au-98 ns (air) x W.C.F. by Chapt. 11.5. 0.73511 0.73701	14,220.0 oduct ne(s) 0.984200 G.S.V. @15 Cu Mtrs 7,475.1 6,665.2	42 42 5 5 °C 93 82	OB	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) tu Mtrs	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs 7,475.193 6,665.282	G.S Load	ee Water Cu Mtrs .V. @60°F ed, US bbls 47,050.000 41,952.000		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air) 5,495.089 4,912.379
Totals Product Code (*) 1 2 Long Tons Product Code (*) 1 2	Gasoline Gasoline = Metric to Density @ 15°C 0.7362 0.7381	Pro Nar 2 Au-95 2 Au-98 ns (air) x W.C.F. by Chapt. 11.5. 0.73511 0.73701	14,220.0 oduct ne(s) 0.984200 G.S.V. @15 Cu Mtrs 7,475.1 6,665.2	42 42 5 5 °C 93 82	OB	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) tu Mtrs	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs 7,475.193 6,665.282	G.S Load	ee Water Cu Mtrs .V. @60°F ed, US bbls 47,050.000 41,952.000		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air) 5,495.089 4,912.379
Totals Product Code (*) 1 2 Long Tons Product Code (*) 1 2	Gasoline Gasoline = Metric to Density @ 15°C 0.7362 0.7381	Pro Nar 2 Au-95 2 Au-98 ns (air) x W.C.F. by Chapt. 11.5. 0.73511 0.73701	14,220.0 oduct ne(s) 0.984200 G.S.V. @15 Cu Mtrs 7,475.1 6,665.2	42 5 °C 93 82	OB	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) u Mtrs	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs 7,475.193 6,665.282	G.S Load	ee Water Cu Mtrs .V. @60°F ed, US bbls 47,050.000 41,952.000		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air) 5,495.089 4,912.379
Totals Product Code (*) 1 2 Long Tons Product Code (*) 1 2	Gasoline Gasoline Density @ 15°C 0.7362 0.7381	Pro Nar e Au-95 e Au-98 ns (air) x W.C.F. by Chapt. 11.5. 0.73511 0.73701 Totals:	14,220.0 nduct ne(s) 0.984200 G.S.V. @15 Cu Mtrs 7,475.1 6,665.2 14,140.4	42 42 5 5 °C 93 82 75 5	OB	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) tu Mtrs	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs 7,475.193 6,665.282 14,140.475	G.S Load	ee Water Cu Mtrs .V. @60°F ed, US bbls 47,050.000 41,952.000		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air) 5,495.089 4,912.379 10,407.468
Totals Product Code (*) 1 2 Long Tons Product Code (*) 1 2 Origin for	Gasoline Gasoline = Metric tor Density @ 15°C 0.7362 0.7381	Pro Nar e Au-95 e Au-98 ns (air) x W.C.F. by Chapt. 11.5. 0.73511 0.73701 Totals:	14,220.0 duct ne(s) 0.984200 G.S.V. @15 Cu Mtrs 7,475.1 6,665.2 14,140.4	42 42 5 5 °C 93 82 75	OB	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) tu Mtrs	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs 7,475.193 6,665.282 14,140.475	G.S Load	ee Water Cu Mtrs .V. @60°F ed, US bbls 47,050.000 41,952.000 89,002.000		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air) 5,495.089 4,912.379 10,407.468 Metric Tons
Totals Product Code (*) 1 2 Long Tons Product Code (*) 1 2 Origin for	Gasoline Gasoline Density @ 15°C 0.7362 0.7381 Densities:	Pro Nar 2 Au-95 2 Au-98 ns (air) x W.C.F. by Chapt. 11.5. 0.73511 0.73701 Totals: Density at 15°C	14,220.0 duct me(s) 0.984200 G.S.V. @15 Cu Mtrs 7,475.1 6,665.2 14,140.4 C in vac is base	42 42 5 5 °C 93 82 75 don Bill	OB	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) tu Mtrs	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs 7,475.193 6,665.282 14,140.475 °C by T 53B.	G.S Load	ee Water Cu Mtrs .V. @60°F ed, US bbls 47,050.000 41,952.000 89,002.000		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air) 5,495.089 4,912.379 10,407.468 Metric Tons (in yacuo)
Totals Product Code (*) 1 2 Long Tons Product Code (*) 1 2 Origin for	Gasoline Gasoline = Metric tor Density @ 15°C 0.7362 0.7381 Densities:	Pro Nar Au-95 Au-98 ns (air) x W.C.F. by Chapt. 11.5. 0.73511 0.73701 Totals: Density at 15°0	14,220.0 duct me(s) 0.984200 G.S.V. @15 Cu Mtrs 7,475.1 6,665.2 14,140.4 C in vac is base	42 42 5 5 °C 93 82 75 do n Bill	OB4 C	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) tu Mtrs	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs 7,475.193 6,665.282 14,140.475 °C by T 53B.	G.S Load	ee Water Cu Mtrs .V. @60°F ed, US bbls 47,050.000 41,952.000 41,952.000 600 5 408 30		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air) 5,495.089 4,912.379 10,407.468 Metric Tons (in vacuo) 5,503.237
Totals Product Code (*) 1 2 Long Tons Product Code (*) 1 2 Origin for Origin for	Gasoline Gasoline = Metric tor Density @ 15°C 0.7362 0.7381 Densities:	Pro Nar Au-95 Au-98 ns (air) x W.C.F. by Chapt. 11.5. 0.73511 0.73701 Totals: Density at 15°0	14,220.0 duct me(s) 0.984200 G.S.V. @15 Cu Mtrs 7,475.1 6,665.2 14,140.4 C in vac is base	6 6 7 75 6 75 6 75	OB	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) tu Mtrs	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs 7,475.193 6,665.282 14,140.475 °C by T 53B.	G.S Load	ee Water Cu Mtrs .V. @60°F ed, US bbls 47,050.000 41,952.000 89,002.000 .ong .ong .ons 5,408.30		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air) 5,495.089 4,912.379 10,407.468 Metric Tons (in vacuo) 5,503.237
Totals Product Code (*) 1 2 Long Tons Product Code (*) 1 2 Origin for Origin of Measurement	Gasoline Gasoline = Metric to Density @ 15°C 0.7362 0.7381 Densities:	Pro Nar Au-95 Au-98 Ns (air) x W.C.F. by Chapt. 11.5. 0.73511 0.73701 Totals: Density at 15°0 measured by si	14,220.0 duct ne(s) 0.984200 G.S.V. @15 Cu Mtrs 7,475.1 6,665.2 14,140.4 C in vac is base hip's UTI tape a	6 6 7 75 and wate	OB C	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) tu Mtrs ling density 15	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs 7,475.193 6,665.282 14,140.475 °C by T 53B.	G.S Load	ee Water Cu Mtrs .V. @60°F ed, US bbls 47,050.000 41,952.000 41,952.000 89,002.000 5,408.30 4,834.79		14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air) 5,495.089 4,912.379 10,407.468 Metric Tons (in vacuo) 5,503.237 4,919.645
Totals Product Code (*) 1 2 Long Tons Product Code (*) 1 2 Origin for Origin of Measurem	Gasoline Gasoline = Metric to Density @ 15°C 0.7362 0.7381 Densities: ents:	Pro Nar Au-95 Au-98 Ns (air) x W.C.F. by Chapt. 11.5. 0.73511 0.73701 Totals: Density at 15°C measured by si	14,220.0 duct ne(s) 0.984200 G.S.V. @15 Cu Mtrs 7,475.1 6,665.2 14,140.4 C in vac is base hip's UTI tape a	6 6 7 93 82 75 d on Bill and wate	OB OB C	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) tu Mtrs ling density 15 ng paste.	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs 7,475.193 6,665.282 14,140.475 °C by T 53B.	G.S Load	ee Water Cu Mtrs .V. @60°F ed, US bbls 47,050.000 41,952.000 41,952.000 89,002.000 5,408.30 4,834.79)	14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air) 5,495.089 4,912.379 10,407.468 Metric Tons (in vacuo) 5,503.237 4,919.645
Totals Product Code (*) 1 2 Long Tons Product Code (*) 1 2 Origin for Origin for Measurem Remarks:	Gasoline Gasoline = Metric to Density @ 15°C 0.7362 0.7381 Densities: ents:	Pro Nar Au-95 Au-98 M.C.F. by Chapt. 11.5. 0.73511 0.73701 Totals: Density at 15°C measured by si Measurements	14,220.0 duct ne(s) 0.984200 G.S.V. @15 Cu Mtrs 7,475.1 6,665.2 14,140.4 C in vac is base hip's UTI tape a were taken fro	42 5 °C 93 82 75 d on Bill and wate	OB OB C	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) tu Mtrs ling density 15 ng paste. es.	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs 7,475.193 6,665.282 14,140.475 °C by T 53B.	G.S Load	ee Water Cu Mtrs .V. @60°F ed, US bbls 47,050.000 41,952.000 41,952.000 89,002.000 5,408.30 4,834.79)	14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air) 5,495.089 4,912.379 10,407.468 Metric Tons (in vacuo) 5,503.237 4,919.645
Totals Product Code (*) 1 2 Long Tons Product Code (*) 1 2 Origin for Origin for Measurem Remarks: Sea valve	Gasoline Gasoline = Metric to Density @ 15°C 0.7362 0.7381 Densities: ents:	Pro Nar Au-95 Au-98 Ns (air) x W.C.F. by Chapt. 11.5. 0.73511 0.73701 Totals: Density at 15°C measured by st Measurements Starboard:	14,220.0 duct ne(s) 0.984200 G.S.V. @15 Cu Mtrs 7,475.1 6,665.2 14,140.4 C in vac is base hip's UTI tape a were taken fro Y12346	42 5 6 93 82 75 d on Bill and wate m ship's Po	OB OB C	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) w Mtrs ling density 15 ng paste. es. Y12345	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs 7,475.193 6,665.282 14,140.475 °C by T 53B.	G.S Load	ee Water Cu Mtrs .V. @60°F ed, US bbls 47,050.000 41,952.000 41,952.000 600 5,408.30 4,834.79)	14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air) 5,495.089 4,912.379 10,407.468 Metric Tons (in vacuo) 5,503.237 4,919.645
Totals Product Code (*) 1 2 Long Tons Product Code (*) 1 2 Origin for Origin for Origin of Measurem Remarks: Sea valve "OilJar Ltt	Gasoline Gasoline Gasoline = Metric to Density @ 15°C 0.7362 0.7381 Densities: Densities: ents: Nos.: d" Represe	Pro Nar Au-95 Au-98 M.C.F. by Chapt. 11.5. 0.73511 0.73701 Totals: Density at 15°C measured by si Measurements Starboard: ntative: Nodal	14,220.0 duct ne(s) 0.984200 G.S.V. @15 Cu Mtrs 7,475.1 6,665.2 14,140.4 C in vac is base hip's UTI tape a were taken fro Y12346 r Guramishvili	42 5 • C 93 82 75 and wate m ship's Po i	OB OB C	Factor by Chapt. 11.5 6.29415 6.29409 Totals: Q (GOV) u Mtrs ling density 15 ng paste. es. Y12345	14,220.042 TOV Cu Mtrs 7,490.868 6,729.174 14,220.042 G.S.V. @15°C Loaded, Cu Mtrs 7,475.193 6,665.282 14,140.475 °C by T 53B.	G.S Load	ee Water Cu Mtrs .V. @60°F ed, US bbls 47,050.000 41,952.000 41,952.000 89,002.000 600 5,408.30 4,834.79)	14,140.475 GOV Cu Mtrs 7,490.868 6,729.174 14,220.042 Metric Tons (in air) 5,495.089 4,912.379 10,407.468 Metric Tons (in vacuo) 5,503.237 4,919.645

Report no.GE-0188-04-2017Date of report20-Apr-17VesselTravesternLocationBatumiProductGasoline Au-95, Gasoline Au-98B/Lading date20-Apr-17

ULLAGE REPORT AFTER LOADING

GOST calculation by GOST 3900-47

US Bbls@60°F/Mt vac by GOST 8.595-2010

Draft:	FWD:	11.00	m,	AFT:	11.20	m, Trim:	0.20	m, List:	Nil		
Tank	L	Illage	Т	otal Obs.	Fre	ee Water	Gross Obs.	Temp	Density		Metric
No		Mtrs		Volume	Dip	Volume	Volume		at	*	Tonnes
	Actual	Corrected	1	Cu Mtrs	Mtrs	Cu Mtrs	Cu Mtrs	°C	at T°C		in Vacuo
1P		1.100		612.354			612.354	16.5	0.7352	1	450.203
1S		1.050		616.669			616.669	16.5	0.7352	1	453.375
2P		1.090		L,043.170			1,043.170	17.0	0.7348	1	766.521
2S		1.080		L,044.410			1,044.410	17.0	0.7348	1	767.432
7P		1.440		L,139.891			1,139.891	16.5	0.7352	1	838.048
7S		1.720		L,105.871			1,105.871	16.0	0.7356	1	813.479
8P		1.330		980.429			980.429	17.0	0.7348	1	720.419
85		1.620		948.074			948.074	1/.0	0./348	1	696.645
10		7.900		454.301			454.301	18.5	0.7354	2	334.093
4P 4C		1.110	· ·	1,219.452			1,219.452	23.0	0.7315	2	892.029
45 ED		1.140		1,213./92			1,215./92	23.0	0.7315	2	009.332
50		1.130		1,2/9.023			1,279.023	23.0	0.7315	2	935.005
30		1.120		1,200.303			1,200.303	23.0	0.7315	2	930.342
50		1.120		1,200.303			1,200.303	25.0	0.7515	2	550.542
Totals			14	1 220 042			14 220 042				10 430 285
				1,220.042			17,220.042				10,430.205
Product		Pro	duct			Density	TOV	Fre	ee Water		OBQ (GOV)
Lode (*)	Cacoline		ne(s)			@ 15°C			lu mitrs	_	CU Mtrs
2	Gasoline	- Au-95 Δμ-98				0.73000	7, 4 90.000 6 729 174				
-	Gubonne					0.75070	0,725.171				
Long Tons	= Metric to	ns (air) x	0	.984206		Totals:	14,220.042				
Product	Density	Correction		GOV	G.S.	V. @20°C	G.S.V. @15°C	G.S	.V. @60°F		Metric Tons
Code (*)	@ 20°C	per 1°C		Cu Mtrs	(Cu Mtrs	Cu Mtrs	<u>ι</u>	JS bbls		(in vacuo)
1	0.7322			7,490.868		7519.971	7,473.021		47,036.350)	5,506.122
2	0.7341		(5,729.174		6707.756	6,665.986		41,956.310)	4,924.163
		Totals:	14	1,220.042		14227.727	14,139.007		88,992.660)	10,430.285
Origin for	Doncitioc				8						Motric Tons
	Densities.	Density at 15°	C in va	is based on	Bill of Lad	ding density 15	°C by T 53B.		ong Tons	*	(in air)
								'	5.411.14	1	5 497 973
Origin of									-,	1	5, 157, 575
Measurem	ents:	measured by s	hip's U	TI tape and w	ater find	ing paste.			4,839.22	2	4,916.875
Remarks:		Measurements	were t	aken from shi	ip's hatch	es.					
Sea valve	Nos.:	Starboard:	Y1234	6	Port:	Y12345					
"Oil]ar I t	d" Renrese	ntative: Noda	r Gura	mishvili		10					
Mactor c	of MV "Tre	vectorn". D	hert	Inhneton				10	250 36	\vdash	10 414 849
	עויויע ווכ	IVESCEIT I N	JUCIL	JULIACOLI				1 10	,∠JU.JU		0,717,010

Report no.	GE-0188-04-2017	VESSEL TANKS INSPECT	ION REPORT
Date of report	20-Apr-17		
Vessel	Travestern		
Location	Batumi		
Product	Gasoline Au-95, Gasoline Au-98	Date of tank inspection:	19-Apr-17
B/Lading date	20-Apr-17	Time of tank inspection:	08:54

We hereby report that we, "OilJar Ltd", attended on board the Vessel for the purpose of visually inspecting the nominated cargo tanks.

We report that the nominated cargo was to be loaded into the following Vessel tanks:

NOMINATED CARGO:	Gasoline Au-95	Gasoline Au-98		
PORTTANKS	1, 2, 7, 8	4, 5		
CENTRAL TANKS	Not applicable	1, 3		
STARBOARD TANKS	1, 2, 7, 8	4, 5		

Each of the listed tanks is equipped with vapour lock for manual measurements.

Each of the listed tanks were inspected by us. In our opinion the listed cargo tanks have been found to be well drained.

Inspection carried out from deck level.

PUMP(S) AND LINES

The line connections to the aforementioned cargo tanks were closed and/or blanked off at the time of inspection.

HEATING COILS WITHIN THE CARGO TANKS: None TANK CONSTRUCTION MATERIAL reported by the Vessel to be:

TANK COATING as reported by the Vessel ;

We have been informed that the interior of the cargo tanks $% \left({{{\mathbf{x}}_{i}}} \right)$ is:

The type of coating was reported by the Vessel to be epoxy.

PREVIOUS 3 CARGOES CARRIED BY THE VESSEL reported to be

CARGO TANK	All cargo tanks
First Last Cargo	L.V. Naphtha
Second Last Cargo	Gas Oil
Third Last Cargo	Gas Oil

Mild Steel

TANK CLEANING:

We have been informed by the vessel that tank cleaning was carried out as follows: Well drained only.

TYPE OF OBQ:

This report does not cover the state of cleanliness and dryness of Vessel tanks, pump(s) and line systems at inaccessible spots and/or possible release of components of previous cargoes during loading, discharge or transport of the cargo, for which the Vessel is fully responsible. This report represents our findings at the time and on the date of our inspection

ON BOARD QUANTITY (OBQ) REPORT

Report no.	GE-0188-04-2017
Date of report	20-Apr-17
Vessel	Travestern
Location	Batumi

Product Gasoline Au-95, Gasoline Au-98

B/Lading date

Г

20-Apr-17

Draft :	FWD:		m, AFT:	m, Trim :		m, List:	Nil		
Tank	Inr	nage	Total Observed	Free	Water	Gross Observed	Non-	Liquid,	Cu Mtrs
No	Me	tres	Volume			Volume	Liquid	by Trim	by Wedge
	Actual	Corrected	Cu Mtrs	Dip	Cu Mtrs	Cu Mtr	S	correction	forrmula
1P									
1S									
2P									
2S									
7P									
7S									
8P									
8S									
1C									
4P									
4S									
5P									
5S									
3C									
					0.000				
Tanks for I	reterence on	y -	0.000		0.000	0.000	0.000	0.000	0.000

SUMMARY OF QUANTITY

Total Observed	Free Water	Gross Observed	Liquid Volume	Non-Liquid Volume
Cu Mtrs	Cu Mtrs	Cu Mtrs	Cu Mtrs	Cu Mtrs
0.000	0.000	0.000	0.000	0.000

Previous product in tanks reported by the Vessel to be

L.V. Naphtha

Measurements by representative of the vessel and witnessed by .

Calculations by .

Master of MV "Travestern": Robert Johnston "OilJar Ltd" Representative: Nodar Guramishvili

LIQUID OBQ CALCULATION BY WEDGE FORMULA

Report no. Date of report		GE-0188-04-2 20-Apr-17	017						
Vessel		Travestern							
Location		Batumi							
Product		Gasoline Au-9	5, Gasoline A	lu-98					
B/Lading date		20-Apr-17							
Draft (m) :		FWD:		AFT:		Trim :		List:	Nil
Formulae : ((U - ((DxF)):	x F) + S = A			(x 0.5) / F =	Cubic Metr	es	
Tank	L	U	D	D x F	S	A	A x A	W	Volume
1P									
1S									
2P									
25									
7P									
7S									
8P									
8S									
1C									
4P									
4S									
5P									
5S									
3C									
FIELD INFORMATION	N]	L.B.P.	Length betv	veen perpen	diculars	
+Draft of ship Aft of	:			metres	L	Length of ta	ank		
-Draft of ship Forwa	ard of			metres	U	Distance fro	om ullage po	int to aft bull	khead
=Trim of ship of				metres	D	Total gauge	e height		
divided by L.B.P. of			0.00	metres	F	Trim factor			
= i rim Factor of			0.00000	(F)	5	Sounding (1	nnage) of lic	julā Oli ulkbord	
					 W	Width of tar	nk		

Measurements by representative of the vessel and witnessed by . Calculations by .

Master of MV "Travestern":

Calculation by ASTM D 1250-2004

Report no.			GE-0188-04-20	17											
Date of repo	rt		20-Apr-17						Origin of		Before:	from analysis by	Oil Termin	al Laborato	ory
Vessel			Travestern						Densities:		After :	from analysis by	Oil Termin	al Laborato	ory
Location			Batumi						Pipelines ((as reported	Before:	Full			
Product			Gasoline Au-95						by the Ins	stallation)	After :	Full			
B/Lading dat	e		20-Apr-17						Average D	Density at	15°C (in vacuo)	:	0.7362		
	Total	Free	Total Observed	Free	Floating		Gross Observed	Actual	Density	VCE by	Gross Standard	Gross		Salts +	Net
	Measured	Water	Volume	Water	Roof.	Shell	Volume	Temp	at 15 °C	T 54B	Volume	Metric Tons	Sediment	Water	Metric Tons
	Mtrs	Mtrs	Cu Mtrs	Cu Mtrs	Cu Mtrs	correction	Cu Mtrs	°C	by T 53B		Cu Mtrs	(in Vacuo)	mass%	mass%	(in Vacuo)
Tank	8.582		15.088.320		149.576	0.99992	14.937.549	16.6	0.7362	0.99802	14.907.973	10,975,250	-	-	10,975,250
60	4.330		7,586.079		149.446	0.99990	7,435,889	15.9	0.7362	0.99889	7,427.635	5,468.225	-	-	5,468,225
Difference:			7,502.241				7,501.660				7,480.338	5,507.025			5,507.025
Tank			-			-	-				-	-	-	-	-
			-			-	-				-	-	-	-	-
Difference:			-				-		-	-	-	-	-		-
Tank			-			-	-				-	-	-	-	-
			-			-	-				-	-	-	-	-
Difference:			-				-			-	-	-			-
Tank			-			-	-				-	-	-	-	-
			-			-	-				-	-	-	-	-
Difference:			-			1	-		1		-	-			-
Tank			-			-	-				-	-	-	-	-
Differences			-			-	-				-	-	-	-	-
Difference:	I		-				-				-	-			-
Idlik			-			-	-				-		-	-	-
Difference			-			_	<u> </u>				-	<u> </u>	_	_	
Tank			-			-	-				-	-	-	-	_
			-			-	-				_	-	-	-	_
Difference:			-				-				-	-			-
Tank			-			-	-				-	-	-	-	-
			-			-	-				-	-	-	-	-
Difference:			-				-				-	-			-
Tank			-			-	-				-	-	-	-	-
			-			-	-				-	-	-	-	-
Difference:			-				-				-	-			-
TOTAL			7,502.241				7,501.660				7,480.338	5,507.025			5,507.025

Calculation by ASTM D 1250-2004

Report no.			GE-0188-04-20	17											
Date of repo	rt		20-Apr-17						Origin of		Before:	from analysis by	Oil Termin	al Laborato	ory
Vessel			Travestern						Densities:		After :	from analysis by	Oil Termin	al Laborato	ory
Location			Batumi						Pipelines ((as reported	Before:	Full			
Product			Gasoline Au-98						by the Ins	stallation)	After :	Full			
B/Lading dat	e		20-Apr-17						Average D	Density at	15°C (in vacuo)	:	0.7414		
	Total	Free	Total Observed	Free	Floating	1	Gross Observed	Actual	Density	VCE by	Gross Standard	Gross		Salts +	Net
	Measured	Water	Volume	Water	Roof	Shell	Volume	Temp	at 15 °C	T 54B	Volume	Metric Tons	Sediment	Water	Metric Tons
	Mtrs	Mtrs	Cu Mtrs	Cu Mtrs	Cu Mtrs	correction	Cu Mtrs	°C	by T 53B		Cu Mtrs	(in Vacuo)	mass%	mass%	(in Vacuo)
Tank	11.055	1100	8.080.794		107,759	1.0001	7,973,753	23.7	0.7414	0.98933	7.888.673	5.848.662	-	-	5.848.662
61	3.555		2,606.933		107.665	1.0001	2,499,468	23.0	0.7414	0.99019	2,474.948	1.834.926	-	-	1.834.926
Difference:			5,473.861				5,474,285				5,413,725	4,013,736			4,013,736
Tank			-			-	-				-	-	-	-	-
			-			-	-				-	-	-	-	-
Difference:			-				-				-	-			-
Tank			-			-	-				-	-	-	-	-
			-			-	-				-	-	-	-	-
Difference:			-				-			-	-				-
Tank			-			-	-				-	-	-	-	-
			-			-	-				-	-	-	-	-
Difference:			-	1			-		1		-	-			-
Tank			-			-	-				-	-	-	-	-
			-			-	-				-	-	-	-	-
Difference:			-			1	-				-	-			-
Tank			-			-	-				-	-	-	-	-
Differences			-			-	-				-	-	-	-	-
Difference:			-				-				-	-			-
Idlik			_				_				_		-	_	_
Difference			-			_							_	_	
Tank			-			-	-				_	-	-	_	_
			-			-	_				-	-	_	-	-
Difference:			-				-	1			-	-			-
Tank			-			-	-				-	-	-	-	-
			-			-	-				-	-	-	-	-
Difference:	·		-				-		·		-	-	·		-
TOTAL			5,473.861				5,474.285				5,413.725	4,013.736			4,013.736

GOST calculation by GOST 3900-47

Date of room versal20-Apr-1Serversal room analysis by Oil Terminu Laboratory Pipelines (as reported Pipelines (as reported Pipelines (as reported)Before: room analysis by Oil Terminu Laboratory Pipelines (as reported)Toom analysis by Oil Terminu Laboratory Pipelines (as reported)Before: room analysis by Oil Terminu Laboratory Pipelines (as reported)Toom analysis by Oil Terminu Laboratory Pipelines (as reported)Before: room analysis by Oil Terminu Laboratory Pipelines (as reported)Toom analysis by Oil Terminu Laboratory Pipelines (as reported)Before: room analysis by Oil Terminu Laboratory Pipelines (as reported)FullSubarratory Full	Report no.			GE-0188-04-20	17											
VesselTavester	Date of repo	rt		20-Apr-17						Origin of			Before:	from analysis by	/ Oil Termin	al Laboratory
LocationBatumiSeriesSeriesSeriesFullAfterSeriesFullPoduct20-Apr-1720-Apr-17AfterFourValueAfterFourValueAfterFourValueAfterFourValueAfterFourValueAfterAfterAfterSeriesAfter </th <td>Vessel</td> <td></td> <td></td> <td>Travestern</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Densities:</td> <td>1</td> <td></td> <td>After :</td> <td>from analysis by</td> <td>/ Oil Termin</td> <td>al Laboratory</td>	Vessel			Travestern						Densities:	1		After :	from analysis by	/ Oil Termin	al Laboratory
ProductGasoline Au-95 B/Lading dataGasoline Au-95 B/Lading dataGasoline Au-95 Density di Col Nacu-0After:Full Aure-1Full Aure-1Meter:ConTotal Masured MysterTotal Observed VolumeNine WaterGross Observed Roof, ShellActual ShellGross Observed CulMits CulMitsActual Mutic TonsGross Standard Persity di 20°CGross Persity di 20°CBS+W PersityNetric Tons Metric TonsBS+W Metric TonsNetric Metric TonsMetric Tons Metric TonsBS+W Metric TonsNetric Metric TonsNetric Metric TonsMetric Tons Metric TonsBS+W Metric TonsNetric Metric TonsNetric <b< th=""><td>Location</td><td></td><td></td><td>Batumi</td><td></td><td></td><td></td><td></td><td></td><td>Pipelines</td><td>(as reported</td><td>1</td><td>Before:</td><td>Full</td><td></td><td></td></b<>	Location			Batumi						Pipelines	(as reported	1	Before:	Full		
B(lading late 20-Apr-17 Querage Density at 20°C (in vacu): 0.7322 Marge Density at 20°C (in vacu): Normal Control	Product			Gasoline Au-95						by the Ins	stallation)		After :	Full		
Total Free Measured Total Observed Water Free Water Free Water <th< th=""><td>B/Lading dat</td><td>e</td><td></td><td>20-Apr-17</td><td></td><td></td><td></td><td></td><td></td><td>Average [</td><td>Density at 20</td><td>℃ (in vac</td><td>uo):</td><td>0.7322</td><td></td><td></td></th<>	B/Lading dat	e		20-Apr-17						Average [Density at 20	℃ (in vac	uo):	0.7322		
Messured Mtrs Water Water (mtrs Water Uthrs Neof, Cu Mtrs Shell Cu Mtrs Volume Cu Mtrs Tem, Cu Mtrs at 20° Cr Factor Pactor Density Pactor Volume at 20° Cu Mtrs Metric Tons (m Vacuo) Saits Metric Tons (m Vacuo) Tank 8.822 15,088.20 1199.03 0.99992 149.37.622 16.6 0.7322 0.000857 0.7357 7,471.498 5,470.631 < 5,510.015 Tank 3.30 7.596.079 149.302 0.99992 7,435.651 15.0 0.7322 0.000857 0.7357 7,471.498 5,470.631 < 5,510.015 Tank -		Total	Free	Total Observed	Free	Floating		Gross Observed	Actual	Density	Correction	Actual	Gross Standard	Gross	BS +W +	Net
Mtrs Mtrs Cu Mtrs (in Vacuo) mass% (in Vacuo) (in Vacuo) (in Vacuo) (in Vacuo) (in Vacuo) (in Vac		Measured	Water	Volume	Water	Roof.	Shell	Volume	Temp	at 20°C	Factor	Density	Volume at 20°C	Metric Tons	Salts	Metric Tons
Tank 8.582 15,088.320 149.503 0.99992 14,937.622 16.6 0.7322 0.000857 0.7351 14,996.785 10,980.646 - 10,980.646 - 10,980.646 - 10,980.646 - 10,980.646 - 10,980.646 - 10,980.646 - 10,980.646 - 10,980.646 - 10,980.646 - 10,980.646 - 10,980.646 - 10,980.646 - 10,980.646 - 10,980.646 - 10,980.646 - 10,980.646 - 10,980.646 - 5,470.631 - 5,470.631 - 5,470.631 - <td></td> <td>Mtrs</td> <td>Mtrs</td> <td>Cu Mtrs</td> <td>Cu Mtrs</td> <td>Cu Mtrs</td> <td>correction</td> <td>Cu Mtrs</td> <td>°C</td> <td></td> <td>per 1°C:</td> <td>Denorey</td> <td>Cu Mtrs</td> <td>(in Vacuo)</td> <td>mass%</td> <td>(in Vacuo)</td>		Mtrs	Mtrs	Cu Mtrs	Cu Mtrs	Cu Mtrs	correction	Cu Mtrs	°C		per 1°C:	Denorey	Cu Mtrs	(in Vacuo)	mass%	(in Vacuo)
60 4.30 7,586.079 149.382 0.99990 7,435.953 15.9 0.7327 7,471.498 5,470.631 - 5,470.631 Difference: -	Tank	8.582		15.088.320		149.503	0.99992	14.937.622	16.6	0.7322	0.000857	0.7351	14,996,785	10,980.646	-	10,980.646
Difference: 7,502.241 7,501.669 7,522.287 5,510.015 5,510.015 Tank	60	4.330		7,586.079		149.382	0.99990	7,435.953	15.9	0.7322	0.000857	0.7357	7,471.498	5,470.631	-	5,470.631
Tank Image: Constraint of the second secon	Difference:			7,502.241		L		7,501.669			• •		7,525.287	5,510.015		5,510.015
Difference: -	Tank			-			-	-					-	-	-	-
Difference: - <th< th=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td></th<>				-			-	-					-	-	-	-
Tank Image: Constraint of the sector of th	Difference:			-									-			-
Image: constraint of the straint o	Tank			-			-	-					-	-	-	-
Difference: -				-			-	-					-	-	-	-
Tank -	Difference:			-				-					-	-		-
Image: constraint of the straint o	Tank			-			-	-					-	-	-	-
Difference: -				-			-	-					-	-	-	-
Tank -	Difference:			-	1	1	1	-	1	1			-	-	1 1	-
Difference: - - - - - - - Tank - - - - - - - - Difference: - - - - - - - Tank - - - - - - - - Difference: - - - - - - - Tank - - - - - - - Difference: - - - - - - - Tank - - - - - - - - Difference: - - - - - - - Tank - - - - - - - - Tank - - - - - - - - - Tank - - - - - - - - - Difference: - - - - - - - - Difference: - - - </th <td>Tank</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Tank			-			-	-					-	-	-	-
Difference: - - - - - - - Tank - - - - - - - - Difference: - - - - - - - Tank - - - - - - - - Difference: - - - - - - Tank - - - - - - Difference: - - - - - - Tank - - - - - - Difference: - - - - - - Difference: - - - - - - TOTAL 7,502.241 7,501.669 7,525.287 <th< th=""><td>D:00</td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	D:00			-			-	-					-	-	-	-
Tank -	Difference:			-	1		1	-	1	1			-	-	1 1	-
Difference: - - - - - - - Tank - - - - - - - - Difference: - - - - - - - Difference: - - - - - - - Tank - - - - - - - Difference: - - - - - - Tank - - - - - - Difference: - - - - - - Tank - - - - - - Difference: - - - - - - Tank - - - - - - Difference: - - - - - - Difference: <td< th=""><td>Тапк</td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td></td<>	Тапк			-			-	-					-	-	-	-
Difference: - - - - - - - Tank - - - - - - - - Difference: - - - - - - - Tank - - - - - - - Difference: - - - - - - - Tank - - - - - - - - Difference: - - - - - - - - Difference: - - - - - - - - Difference: - - - - - - - TOTAL 7,502.241 7,501.669 7,525.287 5,510.015 5,510.015	Difference:	I		-			-						-	-	-	
Tank - - - - - - Difference: - - - - - - Tank - - - - - - Difference: - - - - - - Tank - - - - - - Difference: - - - - - - Tank - - - - - - Difference: - - - - - - TOTAL 7,502.241 7,501.669 7,525.287 5,510.015 5,510.015	Tank						_							-		
Difference: - - - - - Tank - - - - - - Difference: - - - - - - Difference: - - - - - - Tank - - - - - - Difference: - - - - - - Tank - - - - - - Difference: - - - - - - TOTAL 7,501.669 7,525.287 5,510.015 5,510.015	Tank			_			_	-					_	_	_	_
Tank - - - - - - - Difference: - - - - - - Tank - - - - - - Difference: - - - - - - TOTAL 7,502.241 7,501.669 7,525.287 5,510.015 5,510.015	Difference:			-							11		-	-		_
Difference: - - - - - - Tank - - - - - - Difference: - - - - - TOTAL 7,502.241 7,501.669 7,525.287 5,510.015 5,510.015	Tank			-			-	_					-	-	-	_
Difference: - - - - - Tank - - - - - - Difference: - - - - - - Difference: - - - - - - TOTAL 7,502.241 7,501.669 7,525.287 5,510.015 5,510.015	_			-			-	-					-	-	-	-
Tank -	Difference:			-				-					-	-		-
Difference: - - - - - - - TOTAL 7,502.241 7,501.669 7,525.287 5,510.015 5,510.015	Tank			-			-	-					-	-	-	-
Difference: - <th< th=""><td></td><td></td><td></td><td>-</td><td></td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td></th<>				-			-	-					-	-	-	
TOTAL 7,502.241 7,501.669 7,525.287 5,510.015 5,510.015	Difference:			-				-					-	-		-
	TOTAL			7,502.241				7,501.669					7,525.287	5,510.015		5,510.015

GOST calculation by GOST 3900-47

Report no.			GE-0188-04-20	17											
Date of repo	rt		20-Apr-17						Origin of			Before:	from analysis by	/ Oil Termir	al Laboratory
Vessel			Travestern						Densities	:		After :	from analysis by	/ Oil Termir	al Laboratory
Location			Batumi						Pipelines	(as reported		Before:	Full		
Product			Gasoline Au-98						by the In	stallation)		After :	Full		
B/Lading dat	e		20-Apr-17						Average [Density at 20)°C (in vac	uo):	0.7374		
	Total	Free	Total Observed	Free	Floating		Gross Observed	Actual	Density	Correction	Actual	Gross Standard	Gross	BS +W +	Net
	Measured	Water	Volume	Water	Roof,	Shell	Volume	Temp.	at 20°C	Factor	Density	Volume at 20°C	Metric Tons	Salts	Metric Tons
	Mtrs	Mtrs	Cu Mtrs	Cu Mtrs	Cu Mtrs	correction	Cu Mtrs	•C		per 1°C:	•	Cu Mtrs	(in Vacuo)	mass%	(in Vacuo)
Tank	11.055		8,080.794		107.655	1.0001	7,973.857	23.7	0.7374	0.000857	0.7342	7,939.254	5,854.406	-	5,854.406
61	3.555		2,606.933		107.567	1.0001	2,499.566	23.0	0.7374	0.000857	0.7348	2,490.753	1,836.681	-	1,836.681
Difference:			5,473.861		-		5,474.291					5,448.501	4,017.725		4,017.725
Tank			-			-	-					-	-	-	-
			-			-	-					-	-	-	-
Difference:			-					-					-		-
Tank			-			-	-					-	-	-	-
			-			-	-					-	-	-	-
Difference:			-	1		1	-	1				-	-		-
Tank			-			-	-					-	-	-	-
			-			-	-					-	-	-	-
Difference:			-		1		-	1	1			-	-	1	-
Tank			-			-	-					-	-	-	-
Difference			-			-	-					-	-	-	-
Difference:			-				-					-	-		-
Idnk			-			-	-					-	-	-	-
Difference:	I		-				-			11		-	-		-
Tank			-			-	-					-	-	-	-
			-			-	-					-	-	-	-
Difference:			-				_					-	-		-
Tank			-			-	-					-	-	-	-
			-			-	-					-	-	-	-
Difference:			-				-					-	-		-
Tank			-			-	-					-	-	-	-
			-			-	-					-	-	-	-
Difference:			-				-					-	-		-
TOTAL			5,473.861				5,474.291					5,448.501	4,017.725		4,017.725

VESSEL EXPERIENCE REPORT

Report No.	GE-0188-04-2017
Date	20-Apr-17
Vessel	Travestern
Location	Batumi

Product

Gasoline Au-95, Gasoline Au-98

B/Lading date

20-Apr-17

The following "Vessel Experience Factor" (VEF), has been calculated according to IP Petroleum Measurement Manual Part 16 (Annex C, Method 1), in which the following is noted (see also remarks, below):

(a) There must be a minimum of five qualifying voyages, but more are preferred.

(b) Voyages prior to any structural modification which may affect cargo capacities do not qualify.

(c) Voyages where shore quantities are not available do not qualify.

(d) No minimum percentage capacity is specified for qualification.

(e) It is not advised whether quantities should be stated as weight or volume.

Voyage	Date	Port	Cargo	Vessel's figure (A) Metric tons	Shore Figure (B) Metric tons	Vessel Load/Disch Ratio	Qualify
Last	7-Apr-17	Arkhangelsk	Gas Oil	16,185.893	16.219.781	0.99790	Yes
2nd last	22-Mar-17	St. Petersburg	Gas Oil	15.039.957	15.027.052	1.00087	No
3rd last	8-Mar-17	Donges	Naphtha	10.008.690	10,005,434	1.00040	No
4th last	4-Mar-17	Pembroke	Gas Oil	16,123.012	16,213.426	0.99445	Yes
5th last	26-Feb-17	Mongstad	Multigrade	13,277.646	13,308.735	0.99767	Yes
6th last	16-Feb-17	Wilhelmshaven	Gas Oil	13,191.496	13,194.836	0.99970	Yes
7th last	11-Feb-17	Le Havre	Naphtha	12,754.882	12,834.611	0.99377	No
8th last	8-Feb-17	Wilhelmshaven	Gas Oil	14,456.485	14,505.649	0.99655	Yes
9th last	2-Feb-17	Rotterdam	Gas Oil	16,166.701	16,236.449	0.99575	Yes
10th last	23-Jan-17	St. Petersburg	Gas Oil	16,063.000	16,145.150	0.99492	Yes
	Step (b) - To	btals, excluding present card	go	143,267.762	143,691.123]	
	Step (c) - Av	verage Vessel Load Ratio (V	LR), (A)/(B)	0.99	9705		
	Permissible	/LR range (plus / minus 0.	3%)	1.00004	0.99406		
	Step (a) - Ta	otals of qualifying vovages of	only	105,464,233	105,824,026		
	Step (h) - Av	verage VLR as step (c), qua	lifying voyages only	0.99	9660		
	VLR (VEF) ra	ange (plus / minus 0.3%)	, , , , , , , , , , , , , , , , , , , ,	0.99959	0.99361		
Vessel's fi	gures this voy	age (Excluding OBQ)	10,422.882		Number of qualify	- ng voyages:	7
Bill of Lad	ing this voyac	je	10,422.062		Vessel Expe	ience Fac	tor
Vessel loa	ded ratio this	voyage	1.0001		0.9	966	

The above mentioned quantities are for the last 0 voyages as obtained from ship's record and cannot be guaranteed as accurate by "OilJar Ltd". No liability can be assumed for errors resulting from improper information supplied by the vessel. Cargo information must be verified in accordance with IP Petroleum manual Manual Part 16 (Annex C, Method 1). Shore quantities derived from ship cargo measurements do not qualify, whether adjusted for VEF or not. Remarks:

Master of MV "Travestern": Robert Johnston "OilJar Ltd" Representative: Nodar Guramishvili

Report no.GE-0188-04-2017Date of report20-Apr-17VesselTravesternLocationBatumiProductGasoline Au-95, Gasoline Au-98B/Lading date20-Apr-17

BUNKER REPORT (Marine Diesel Oil)

Calculation by ASTM D 1250-2004

Average Bunker consu	mption per day, according	g to Vessel's Officer	(Quantities in M	IT VAC)		
While at Sea:	3.0 - 3.5 Mt	While at Port:	2.5 - 3.0 Mt	While at Ancho	or:	2.5 - 3.0 Mt
Last Port of Call:	Arkhangelsk		Time / Date o	f Sailing:	12:30	7-Apr-17
Bunker on Sailing from	n last port, Mt (vac)	(as advised	by Vessel)		150.000	

UPON BERTHING	Date & T	ime of ins	spection	19-Apr-17 08:30 Trim Correcti			n applied	Yes	
Draft	FWD	3.00	m AFT	7.00 m	Trim	4.00	m List		Nil
Tank	Innage	G.O.V.	Temp	Density	Density	VCF	G.S.V.	Metric Tons	Metric Tons
No	Mtrs	Cu Mtrs	°C	15 °C	15°C	Table 54B	Cu Mtrs	(Air)	(Vacuo)
Double bottom	0.180	5.300	15.0	0.8327	0.8327	1	5.300	4.408	4.413
Bunker 2	Visual	39.000	25.0	0.8335	0.8335	0.99142	38.665	32.186	32.227
Bunker 3	Visual	45.000	25.0	0.8325	0.8325	0.9914	44.613	37.093	37.140
Overflow	Empty								
Service 1	Visual	8.200	25.0	0.8325	0.8325	0.9914	8.129	6.759	6.767
Service 2	Visual	9.000	25.0	0.8575	0.8575	0.99177	8.926	7.644	7.654
Totals:		106.500					105.633	88.090	88.201

UPON SAILING

Remarks:

		Date & T	ime of ins	spection	20-Apr-17	00:25	Trim Correction	n applied	Yes
Draf	ft FWD	11.00	m AFT	11.20 m	Trim		m List		Nil
Tank	Innage	G.O.V.	Temp	Density	Density	VCF	G.S.V.	Metric Tons	Metric Tons
No	Mtrs	Cu Mtrs	°C	15 °C	15°C	Table 54B	Cu Mtrs	(Air)	(Vacuo)
Double bottom	Empty								
Bunker 2	Visual	33.500	25.0	0.8335	0.8335	0.99142	33.213	27.647	27.683
Bunker 3	Visual	45.000	25.0	0.8325	0.8325	0.9914	44.613	37.093	37.140
Overflow	Empty								
Service 1	Visual	7.000	25.0	0.8325	0.8325	0.9914	6.940	5.770	5.778
Service 2	Visual	9.000	25.0	0.8575	0.8575	0.99177	8.926	7.644	7.654
Totals:		94,500					93.692	78.154	78.255
Bunker loaded at this	s port:	None		Aforementic	ned densities	s are as adv	vised by the Ves	sel.	

Densities are as advised by ship's Chief Engineer

GE-0188-04-2017 Report no. Date of report 20-Apr-17 Vessel Travestern Location Batumi Gasoline Au-95, Gasoline Au-98 Product

20-Apr-17

BUNKER REPORT (Heavy Fuel Oil)

B/Lading date

Calculation by ASTM D 1250-2004

Average Bunker consumption per day, according to Vessel's Officer (Quantities in MT VAC)							
While at Sea:	22.0 - 24.0 Mt	While at Port:	2.5 - 3.0 Mt	While at Anchor:	-	2.5 - 3.0 Mt	
Last Port of Call:	Arkhangelsk		Time / Date of	f Sailing:	12:30	7-Apr-17	
Bunker on Sailing from	n last port, Mt (vac)	(as advised	by Vessel)				

UPON BERTHING		Date & T	ime of ins	spection	19-Apr-17	08:30	Trim Correction	n applied	Yes
Draft	FWD	3.00	m AFT	7.00 m	Trim	4.00	m List		Nil
Tank	Innage	G.O.V.	Temp	Density	Density	VCF	G.S.V.	Metric Tons	Metric Tons
No	Mtrs	Cu Mtrs	°C	15 °C	15°C	Table 54B	Cu Mtrs	(Air)	(Vacuo)
Deeptank	Empty								
Overflow 1	Empty								
Bunker 2	4.570	119.500	45.0	0.9650	0.9650	0.97873	116.958	112.742	112.864
Bunker 3	3.300	136.000	45.0	0.9650	0.9650	0.97873	133.107	128.308	128.448
Settling	Visual	31.500	60.0	0.9650	0.9650	0.96801	30.492	29.393	29.425
Service 1	Visual	30.000	75.0	0.9650	0.9650	0.95723	28.717	27.682	27.712
Service 2	Visual	33.000	75.0	0.9545	0.9545	0.95662	31.568	30.098	30.132
Overflow 2	Empty								
Bunker Service	Visual	12.500	70.0	0.9650	0.9650	0.96083	12.010	11.577	11.590
Totals:		362.500					352.852	339.800	340.171

UPON SAILING

		Date & T	ime of ins	spection	20-Apr-17	00:25	Trim Correction	n applied	Yes
Draft	FWD	11.00	m AFT	11.20 m	Trim	0.20	m List		Nil
Tank	Innage	G.O.V.	Temp	Density	Density	VCF	G.S.V.	Metric Tons	Metric Tons
No	Mtrs	Cu Mtrs	°C	15 °C	15°C	Table 54B	Cu Mtrs	(Air)	(Vacuo)
Deeptank	Empty								
Overflow 1	Empty								
Bunker 2	4.570	119.500	45.0	0.9650	0.9650	0.97873	116.958	112.742	112.864
Bunker 3	2.930	117.700	45.0	0.9650	0.9650	0.97873	115.197	111.044	111.165
Settling	Visual	27.800	60.0	0.9650	0.9650	0.96801	26.911	25.941	25.969
Service 1	Visual	30.000	75.0	0.9650	0.9650	0.95723	28.717	27.682	27.712
Service 2	Visual	33.000	75.0	0.9545	0.9545	0.95662	31.568	30.098	30.132
Overflow 2	Empty								
Bunker Service	Visual	10.200	70.0	0.9650	0.9650	0.96083	9.800	9.447	9.457
Totals:		338.200					329.151	316.954	317.299
Bunker loaded at this port: None Aforementioned densities are as advised by the Vessel.									

Bunker loaded at this port: Remarks:

Aforementioned densities are as advised by the Vessel.

Densities are as advised by ship's Chief Engineer

Report no.	GE-0188-04-2017
Date of report	20-Apr-17
Vessel	Travestern
Location	Batumi
Product	Gasoline Au-95, Gasoline Au-98
B/Lading date	20-Apr-17

RECEIPT FOR DOCUMENTS

To: Master of MV Travestern (Robert Johnston)	
Please sign for receipt of the documents listed below:	
OBQ report	One
Time Log	One
Void/Ballast Tank Report	One
Vessel Experience Report	One
Ullage Report	One
Document & Sample Receipt	One
Bunker Inspection Reports	Two
Letter of Protest	One
Tank Inspection Report	One
Statement of Facts	One

Instructions regarding documents: 1 set for Vessel's own use

Master of MV "Travestern": Robert Johnston "OilJar Ltd" Representative: Nodar Guramishvili

RECEIPT FOR SAMPLES

		To: Master of mv Travestern (Robert Johnston)							
	Please sign for receipt of the samples listed below:								
Sample Size, Ltr	Number of Samples	Seal Numbers	Sample Description						
1.000	2	10620, 10621 - for vessel	Multiple Ship's Tank Composite Samples (UML after loading) of Gasoline Au-95 ex: 1P, 1S, 2P, 2S, 7P, 7S, 8P, 8S,						
			Multiple Ship's Tank Composite Sample (after loading) of Gasoline Au-98 ex: 1C, 4P, 4S, 5P, 5S, 3C,						
1.000	1	234567	Multiple Shore tank composite sample (before discharge)						
TOTAL	3								

Instruction regarding samples: to be held within a period of 90 days.

GE-0188-04-2017 20-Apr-17 Travestern Batumi

CERTIFICATE OF QUANTITY

Gasoline Au-95

Bill of Lading No.	1
Bill of Lading date	20-Apr-17
Gross Metric Tons in vacuo	5,507.355
Gross Metric Tons in air	5,499.199
Gross Long Tons	5,412.34
Gross US barrels at 60°F	47,085.22
Gross US gallons at 60°F	1,977,579.24
Gross Cubic Metres at at 15°C	7,480.786
Gross Cubic Metres at at 20°C	7,521.654
B/L Density at 15°C in vacuo	0.7362
B/L Density at 20°C in vacuo	0.7322
API gravity from Density at 15°C as per Chapter 11.5.	60.65

Above quantities determined by "OilJar Ltd".

Criteria used for calculations:

Conv. factor US Bbls at 60°F / Mt in vacuo by GOST 8.595-2010 Conv. factor from US Bbls to US Gallons by Table 1 Metric Tons in Air = Metric tons in vacuo * WCF (by Chapter 11.5) Long Tons = Metric Tons in Air * by

B/L Gross Metric tons (vac) were determined by loadport Oil Terminal. Bill of Lading GSV at 15°C= B/L Metric Tons vacuo / B/L density at 15°C. 8.549516079 42 0.998519 0.984206

GE-0188-04-2017 20-Apr-17 Travestern Batumi

CERTIFICATE OF QUANTITY

Gasoline Au-98

Bill of Lading No.	2
Bill of Lading date	20-Apr-17
Gross Metric Tons in vacuo	4,914.707
Gross Metric Tons in air	4,907.448
Gross Long Tons	4,829.94
Gross US barrels at 60°F	41,909.78
Gross US gallons at 60°F	1,760,210.76
Gross Cubic Metres at at 15°C	6,658.592
Gross Cubic Metres at at 20°C	6,694.874
B/L Density at 15°C in vacuo	0.7381
B/L Density at 20°C in vacuo	0.7341
API gravity from Density at 15°C as per Chapter 11.5.	60.15

Above quantities determined by "OilJar Ltd".

Criteria used for calculations:

Conv. factor US Bbls at 60°F / Mt in vacuo by GOST 8.595-2010 Conv. factor from US Bbls to US Gallons by Table 1 Metric Tons in Air = Metric tons in vacuo * WCF (by Chapter 11.5) Long Tons = Metric Tons in Air * by 8.527422779 42 0.998523 0.984206

B/L Gross Metric tons (vac) were determined by loadport Oil Terminal. Bill of Lading GSV at 15°C= B/L Metric Tons vacuo / B/L density at 15°C. Bill of Lading GSV at 20°C= B/L Metric Tons vacuo / B/L density at 20°C.

B/Lading date

GE-0188-04-2017 20-Apr-17 Travestern Batumi Gasoline Au-95, Gasoline Au-98 20-Apr-17

STATEMENT OF FACTS

To: Whom it may concern

We have been appointed as Inspectors on the aforementioned shipment. On behalf of our Principals we wish to draw attention of all parties to the following:

The following cargo manifold valves were sealed by "OilJar Ltd" Representative after loading:

Port FWD:OilJar 12345Port AFT :OilJar 56732Starboard FWD:OilJar 35267Starboard AFT :OilJar 78654

We hereby reserve the right of our Principals to make reference to the above at a later date.

"OilJar Ltd" Representative: Nodar Guramishvili Master of MV "Travestern": Robert Johnston Shore representative: Sidor Ko Sidor Kovpak

Report no. Date of report	GE-0188-04-2017 20-Apr-17	
Vessel	Travestern	STATEMENT OF FACTS
Location	Batumi	
Product	Gasoline Au-95, Gasoline Au-98	
B/Lading date	20-Apr-17	
To: Whom it may	concern	

We have been appointed as Inspectors on the aforementioned shipment. On behalf of our Principals we wish to draw attention of all parties to the following:

The shore line fullness has been verified by high point bleed valve method as per API MPMS 17.6. The data illustrating the verification of fullness of lines for gasoli and gasoline are shown below: Shore tanks nominated for the receipt of gasoil are TK XX, TK XX and TK XX.

The capacity of the gasoil shore line is XX cubic metres.

	Shore tank No.	Innage (Dip)	TOV		
Before	XX	X.XXX m	XXX.XXX cu m		
After	XX	X.XXX m	XXX.XXX cu m		
Differe	ence observed by the	e shore line is	XX.XXX cu m		
The sh	ore tank nominated	for gasoline is TK XX, t	he capacity of gasoline line is XX.XXX cu m	۱.	
	Shore tank No.	Innage (Dip)	TOV		
Before	XX	X.XXX m	XXX.XXX cu m		
After	XX	X.XXX m	XXX.XXX cu m		
Differe	ence observed by the	e shore line is	X.XXX cu m		

We opened high point bleed valves to remain open until liquid appeared in steady stream. We sealed the outlet valves of the nominated shore tanks TK XX, XX and XX (for gasoil) and XX (for gasoline) and sealed the inter valves of the shore tanks TK XX (for gasoil), XX and XX (for gasoline) which have not been nominated to receive the above mentioned cargoes.

We hereby reserve the right of our Principals to make reference to the above at a later date.

"OilJar Ltd" Representative: Nodar Guramishvili

Master of MV "Travestern": Robert Johnston

Report no.	GE-0188-04-2017
Date of report	20-Apr-17
Vessel	Travestern
Location	Batumi
Product	Gasoline Au-95
B/Lading date	20-Apr-17

LETTER OF PROTEST

To:

Whom it may concern

We have been appointed as Inspectors on the aforementioned shipment. On behalf of our Principals we do hereby lodge protest in respect of:

The apparent ship/shore difference noted between the Bill of Lading Quantity and the Quantity measured on board the above named Vessel.

	ASTM C	alculation	GOST Calculation		
	GROSS	WEIGHT	GROSS WEIGHT		
	Metric Tons Metric Tons in Vacuo in Air		Metric Tons in Vacuo	Metric Tons in Air	
Bill of Lading	5,507.355	5,499.199	5,507.355	5,499.199	
Vessel's loaded quantity	5,503.237	5,495.089	5,506.122	5,497.973	
Difference	-4.118	-4.110	-1.233	-1.226	
Difference, %	-0.075%	-0.075%	-0.022%	-0.022%	

GROSS WEIGHT

	Metric Tons in Vacuo	Metric Tons in Air	Metric Tons in Vacuo	Metric Tons in Air
Bill of Lading	5,507.355	5,499.199	5,507.355	5,499.199
Vessel loaded quantity adjusted bv VEF	5,522.012	5,513.836	5,524.907	5,516.730
Difference	14.657	14.637	17.552	17.531
Difference, %	0.266%	0.266%	0.319%	0.319%

We hereby reserve the right of our Principals to make reference to the above at a later date.

Calculation by ASTM D 1250-2004 GOST calculation by GOST 3900-47

The shore tank nominated for gasoline is TK XX, the capacity of gasoline line is XX.XXX cu m.

"OilJar Ltd" Representative: Nodar Guramishvili

Master of MV "Travestern": Robert Johnston

Report no. Date of report Vessel Location Product B/Lading date

LETTER OF PROTEST

To:

Whom it may concern

GE-0188-04-2017 20-Apr-17

Travestern

20-Apr-17

Batumi Gasoline Au-98

We have been appointed as Inspectors on the aforementioned shipment. On behalf of our Principals we do hereby lodge protest in respect of:

The apparent ship/shore difference noted between the Bill of Lading Quantity and the Quantity measured on board the above named Vessel.

	ASTM Calculation <u>GROSS WEIGHT</u> Metric Tons Metric Tons in Vacuo in Air		GOST Calculation GROSS WEIGHT	
			Metric Tons in Vacuo	Metric Tons in Air
Bill of Lading	4,914.707	4,907.448	4,914.707	4,907.448
Vessel's loaded quantity	4,919.645	4,912.379	4,924.163	4,916.875
Difference	4.938	4.931	9.456	9.427
Difference, %	0.100%	0.100%	0.192%	0.192%

	GROSS WEIGHT		GROSS WEIGHT	
	Metric Tons in Vacuo	Metric Tons in Air	Metric Tons in Vacuo	Metric Tons in Air
Bill of Lading	4,914.707	4,907.448	4,914.707	4,907.448
Vessel loaded quantity adjusted hv VEF	4,936.429	4,929.138	4,940.962	4,933.649
Difference	21.722	21.690	26.255	26.201
Difference, %	0.442%	0.442%	0.534%	0.534%

We hereby reserve the right of our Principals to make reference to the above at a later date.

Calculation by ASTM D 1250-2004

GOST calculation by GOST 3900-47

The shore tank nominated for gasoline is TK XX, the capacity of gasoline line is XX.XXX cu m.

"OilJar Ltd" Representative: Nodar Guramishvili

Master of MV "Travestern": Robert Johnston

Report no.GE-0188-04-2017Date of report20-Apr-17VesselTravesternLocationBatumiProductGasoline Au-95, Gasoline Au-98B/Lading date20-Apr-17

LETTER OF PROTEST

To: Whom it may concern

We have been appointed as Inspectors on the aforementioned shipment. On behalf of our Principals we do hereby lodge protest in respect of:

Line displacement was not performed because of lack of permission from Oil Terminal.

We hereby reserve the right of our Principals to make reference to the above at a later date.

"OilJar Ltd" Representative: Nodar Guramishvili

Master of MV "Travestern": Robert Johnston

Report no.	GE-0188-04-2017
Date of report	20-Apr-17
Vessel	Travestern
Location	Batumi
Product	Gasoline Au-95, Gasoline Au-98

B/Lading date 20-Apr-17

Size,	Number	Seal	Sample Description			
Ltr	of samples	Number				
2 500	1	Open	Multiple Ship's Tank Composite Sample (UML after loading) of			
2.500	L	Open	Gasoline Au-95 ex: 1P, 1S, 2P, 2S, 7P, 7S, 8P, 8S,			
0.450	0	Open	Single Ship's Tank Composite Samples (running after loading) of			
0.450	0	Open	Gasoline Au-95 ex: 1P, 1S, 2P, 2S, 7P, 7S, 8P, 8S,			
0.450	1	Open	Single Shore Tank Composite Samples (UML before loading) of			
0.450	T	Open	Gasoline Au-95 ex shore tank(s): 7480.347			
Total: 10 samples						

Retained samples are intended to be held within a period of 90 days.

"OilJar Ltd" Representative: Nodar Guramishvili

SAMPLE LIST

VITOL LOSS CONTROL FORM					
Information to be reported ASAP by mail to Vitol Loss Control (reference code LCL ****** + vitol reference to be mentioned in subject line for Load reports at all times) (reference code LCD ****** + vitol reference to be mentioned in subject line for Discharge reports at all times)					xlosscontrolHOU@vitol.com xlosscontrolSIN@vitol.com xlosscontrolGVA@vitol.com xlosscontrolBAH@vitol.com
Loadport data (*) Vitol company Vitol reference Product group Grade Vessel Country Port Terminal name		Vitol S.A. Geneva LCL GLN Gasoline Au-95 Travestern United Kingdom	Disport data Vitol company Vitol reference Product group Grade Vessel Country Port Terminal name		Vitol S.A. Geneva LCD GLN Gasoline Au-95 Travestern United Kingdom
Bill of Lading details (*)			Outturn details		
Date (<i>B/L</i>) Nett standard volume (N.S.V.) Gross standard Volume (G.S.V.) Total calculated Volume (T.C.V.) Metric Tons Metric Tons B/L Density B/L API Gravtity Bill of Lading based on	Cbm 15 oC Cbm 15 oC Cbm 15 oC Vacuo Air at 15 oC (kg/l) at 60 oF ASTM calc.	20-Apr-17 7,480.786 7,480.786 5,507.355 5,499.199 0.7362 60.65 Transfer of Bill(s) of Lading	Date <i>(outturn)</i> Nett standard volume (N.S.V.) Gross standard Volume (G.S.V.) Total calculated Volume (T.C.V.) Metric Tons Metric Tons Outturn Density Outturn API Gravtity Outturn based on	Cbm 15 oC Cbm 15 oC Cbm 15 oC Vacuo Air at 15 oC (kg/l) at 60 oF _ASTM calc.	20-Apr-17 0.581
BS & W (*) BS & W volume BS & W (%) Sediments (%) Water (%)	Сbт 15 оС		BS & W BS & W volume BS & W (%) Sediments (%) Water (%)	Cbm 15 oC	
Ship's Details at loadport (*) OBQ (G.S.V. liquid volume) OBQ (G.S.V. Non liquid volume) Gross standard Volume (G.S.V.) Free water volume after loading Total calculated Volume (T.C.V.) Metric Tons Metric Tons Density API Gravtity	Cbm 15 oC Cbm 15 oC Cbm 15 oC Cbm 15 oC Cbm 15 oC Vacuo Air at 15 oC at 60 oF		Ship's Details at disport ROB (G.S.V. liquid volume) ROB (G.S.V. Non liquid volume) Gross standard Volume (G.S.V.) Free water volume before discharge Total calculated Volume (T.C.V.) Metric Tons Metric Tons Density API Gravtity	Cbm 15 oC Cbm 15 oC Cbm 15 oC Cbm 15 oC Cbm 15 oC Vacuo Air at 15 oC at 60 oF	
Ship's Details (VEF Corrected) Ship's	Details (VEF Corre	cted) (*)	Ship's Details (VEF Corrected)		
VEF Qualified voyages Gross standard Volume (G.S.V.) Total calculated Volume (T.C.V.) Metric Tons Metric Tons	<i>Cbm 15 oC Cbm 15 oC Vacuo Air</i>	0.99660 7	VEF Qualified voyages Gross standard Volume (G.S.V.) Total calculated Volume (T.C.V.) Metric Tons Metric Tons	Cbm 15 oC Cbm 15 oC Vacuo Air	
COMPARISON (*) COMPARISON					
Ship - B/L difference in volume Ship - B/L difference in (%) Ship - B/L difference in weight Ship - B/L difference in (%)	Cbm 15 oC MTV	-7,480.786 -100.00% -5,507.355 -100.00%	B/L VERSUS OUT OKN COMPARIS B/L - Outturn difference in volume B/L - Outturn difference in (%) B/L - Outturn difference in (%) SHIP (VEF corrected) VERSUS OUT Ship arrival - Outturn difference in Percentage SHIP INTRANSIT COMPARISON Ship LP - Ship DP difference in	Cbm 15 oC MTV TURN COMPARIS Cbm 15 oC	ON
General loadport details (*)			Ship LP - DP difference (%) <i>intransit</i> General disport details		
LOP issued (if yes to whom)	(Y/N)		LOP issued (if yes to whom)	(Y/N)	To whom it may concern
Line displacement performed Total volume of shoreline Superintend present (if yes fill in compar Part cargo loaded Shore tanks used for this loading Ship's Tanks used for this loading Open / Closed ship's tank sampling No. of terminals / Jetties	(Y/N) Cbm 15 oC n (Y/N) (Y/N)		Line displacement performed Total volume of shoreline Superintend present (if yes fill in compa Part cargo discharged Shore tanks used for this discharge Ship's Tanks used for this discharge Open / Closed ship's tank sampling No. of terminals / Jetties	(Y/N) Cbm 15 oC an (Y/N) (Y/N)	
TIME LOG (*) NORT Start loading End loading		(Date) (time)	TIME LOG (*) NORT Start discharge End discharge		(Date) (time)
PUMPING PERFORMANCE (*)	Time and the h	(cbm/hr) (hrs)	PUMPING PERFORMANCE (*)	Time and the h	(cbm/hr) (hrs)
Average pumping rate (cbm/hr) Inspectors (*) Vitol loss control form validated and Inspection company at loadport Inspectors Representative Inspectors Representative Date of reporting loss control form Contact detail (mail)	(Name) (Titlle)	graham@OilJar.com	Average pumping rate (cbm/hr) Inspectors Vitol loss control form validated an Inspection company at disport Inspectors Representative Inspectors Representative Date of reporting loss control form Contact detail (mail)	Ime used (hrs) ad confirmed by: (Name) (Titlle)	vmcs-ops@hotmail.com
(*) Load-port data validated and confirmed to be in line with inspectors final reports (*) Load-port data validated and confirmed to be in line with inspectors final reports (*) Load-port data section filled with data gathered from load-port documents by surveyor at dis-port					

VITOL LOSS CONTROL FORM					
Information to be reported ASAP by mail to Vitol Loss Control (reference code LCL ****** + vitol reference to be mentioned in subject line for Load reports at all times) (reference code LCD ****** + vitol reference to be mentioned in subject line for Discharge reports at all times)					xlosscontrolHOU@vitol.com xlosscontrolSIN@vitol.com xlosscontrolGVA@vitol.com xlosscontrolBAH@vitol.com
Loadport data (*) Vitol company Vitol reference Product group Grade Vessel Country Port Terminal name		Vitol S.A. Geneva LCL GO Gasoline Au-98 Travestern United Kingdom	Disport data Vitol company Vitol reference Product group Grade Vessel Country Port Terminal name		Vitol S.A. Geneva LCD GO Gasoline Au-98 Travestern United Kingdom
Bill of Lading details (*)			Outturn details		
Date (B/L) Nett standard volume (N.S.V.) Gross standard Volume (G.S.V.) Total calculated Volume (T.C.V.) Metric Tons Metric Tons B/L Density B/L API Gravtity Bill of Lading based on	Cbm 15 oC Cbm 15 oC Cbm 15 oC Vacuo Air at 15 oC (kg/l) at 60 oF ASTM calc.	20-Apr-17 6,658.592 6,658.592 4,914.707 4,907.448 0.7381 60.15 Transfer of Bill(s) of Lading	Date <i>(outturn)</i> Nett standard volume (N.S.V.) Gross standard Volume (G.S.V.) Total calculated Volume (T.C.V.) Metric Tons Metric Tons Outturn Density Outturn API Gravtity Outturn based on	Cbm 15 oC Cbm 15 oC Cbm 15 oC Vacuo Air at 15 oC (kg/l) at 60 oF ASTM calc.	20-Apr-17 0.424
BS & W (*) BS & W volume BS & W (%) Sediments (%) Water (%)	Cbm 15 oC		BS & W BS & W volume BS & W (%) Sediments (%) Water (%)	Cbm 15 oC	
Ship's Details at loadport (*) OBQ (G.S.V. liquid volume) OBQ (G.S.V. liquid volume) OBQ (G.S.V. Non liquid volume) OBQ (G.S.V. liquid volume) Gross standard Volume (G.S.V.) OBQ (G.S.V. liquid volume) Free water volume after loading OBQ (G.S.V. liquid volume) Total calculated Volume (T.C.V.) OBQ (G.S.V. liquid volume) Metric Tons OBQ (G.S.V. liquid volume) Density OBQ (G.S.V. liquid volume) API Gravity OBQ (G.S.V. liquid volume)	Cbm 15 oC Cbm 15 oC Cbm 15 oC Cbm 15 oC Cbm 15 oC Vacuo Air at 15 oC at 60 oF		Ship's Details at disport ROB (G.S.V. liquid volume) ROB (G.S.V. Non liquid volume) Gross standard Volume (G.S.V.) Free water volume before discharge Total calculated Volume (T.C.V.) Metric Tons Metric Tons Density API Gravtity	Cbm 15 oC Cbm 15 oC Cbm 15 oC Cbm 15 oC Cbm 15 oC Vacuo Air at 15 oC at 60 oF	
Ship's Details (VEF Corrected) Ship's De	etails (VEF Corre	cted) (*)	Ship's Details (VEF Corrected)		
VEF Qualified voyages Gross standard Volume (G.S.V.) (2 Total calculated Volume (T.C.V.) (2 Metric Tons I Metric Tons (2)	Cbm 15 oC Cbm 15 oC Vacuo Air	0.99660 7	VEF Qualified voyages Gross standard Volume (G.S.V.) Total calculated Volume (T.C.V.) Metric Tons Metric Tons	<i>Cbm 15 oC Cbm 15 oC Vacuo Air</i>	
COMPARISON (*) COMPARISON					
Ship - B/L difference in volume (Ship - B/L difference in (%) Ship - B/L difference in weight / Ship - B/L difference in (%)	Cbm 15 oC	-6,658.592 -100.00% -4,914.707 -100.00%	B/L - Outturn difference in volume B/L - Outturn difference in (%) B/L - Outturn difference in (%) B/L - Outturn difference in (%) SHIP (VEF corrected) VERSUS OUT ShiR arrival - Outturn difference in Rercentage SHIP INTRANSIT COMPARISON Ship LP - Ship DP difference in	Cbm 15 oC MTV TURN COMPARIS Cbm 15 oC	ON
General loadport details (*)			Ship LP - DP difference (%) intransit General disport details		
LOP issued (if yes to whom) ((Y/N)		LOP issued (if yes to whom)	(Y/N)	To whom it may concern
Line displacement performed (Total volume of shoreline (Superintend present (if yes fill in compan (Part cargo loaded (Shore tanks used for this loading Ship's Tanks used for this loading Open / Closed ship's tank sampling No. of terminals / Jetties	(Y/N) Cbm 15 oC (Y/N) (Y/N)		Line displacement performed Total volume of shoreline Superintend present (if yes fill in compa Part cargo discharged Shore tanks used for this discharge Ship's Tanks used for this discharge Open / Closed ship's tank sampling No. of terminals / Jetties	(Y/N) Cbm 15 oC In (Y/N) (Y/N)	
TIME LOG (*) NORT Start loading End loading		(Date) (time)	TIME LOG (*) NORT Start discharge End discharge		(Date) (time)
PUMPING PERFORMANCE (*)	Time used (brs)	(cbm/hr) (hrs)	PUMPING PERFORMANCE (*)	Time used (brs)	(cbm/hr) (hrs)
Inspectors (*) Vital loss control form validated and a Inspection company at loadport Inspectors Representative Inspectors Representative Date of reporting loss control form Contact detail (mail)	(Name) (Titlle)	graham@OilJar.com	Vitol loss control form validated an Inspection company at disport Inspectors Representative Inspectors Representative Date of reporting loss control form Contact detail (mail)	(Name) (Titlle)	<u>ymcs-ops@hotmail.com</u>
(*) Load-port data validated and confirmed to be in line v	with inspectors fina	l reports	Dis-port data validated and confirmed to be in line with (*) Load-port data section filled with data gathered from the section filled with data gathered	n inspectors final repo om load-port documer	orts nts by surveyor at dis-port